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Abstract
Objective: Our objective is to create an effective ensemble tool that can accurately predict MEFV gene variants and determine the threshold value for 
pathogenicity based on the optimal distribution.

Methods: First, we extracted a dataset from the Infevers database [https ://in fever s.uma i-mon tpell ier.f r/web /sear ch.ph p?n=1 ]. Second, we merged the 
variant classification into 2 categories: likely benign and likely pathogenic. Third, we implemented our high-sensitivity model to obtain disease-caus-
ing variants. In the 4 steps, we implemented curve estimation analysis to determine which curve was fitting our variant distribution. We implemented 
the receiver operating curve after the curve estimation analysis to find suitable in silico tool models for logistic regression. Repeated outlier detection 
analysis was performed in the fifth step until no outliers were detected. Ensemble tree-based machine-learning models were used to test a statistical 
model in the final step.

Results: When outliers were taken out, the Revel and BayesDel algorithms both had much higher ROCAUC scores (0.982 [0.967-0.998], P < .001 for 
the combined model; 0.982 [0.967-0.998], P < .001 for Revel; and 0.933 [0.889-0.977], P < .001 for BayesDel). AdaBoost was the most accurate 
machine learning model, with 0.982 ROACUAC scores.

Conclusion: Our study revealed that the implementation of outlier and anomaly detection techniques can enhance the accuracy of statistical models 
and yield more precise outcomes in machine learning datasets.
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Introduction
Familial Mediterranean fever (FMF) is an autosomal reces-

sively inherited disorder that primarily affects serous organs and 
is characterized by high fever, abdominal pain, chest pain, and 
arthritis.1 MEFV gene mutations are responsible for the clinical 
manifestations of FMF. The MEFV gene encodes for the pyrin pro-
tein.2 According to the International Study Group for Systemic 
Autoinflammatory Diseases (INSAID) consensus criteria, more 
than half of the MEFV gene variants are not classified as benign 
or pathogenic.3 Therefore, it is an urgent necessity to classify 
unknown MEFV gene variants. There are 2 traditional ways that 
have been available during the variant classification process: (1) 
functional studies, and (2) clinical studies, which include a larger 
number of patients. Although these methods provided accurate 
solutions, they required a significant amount of time and money. 
Therefore, artificial intelligence (AI) methods, such as combina-
tory evaluation of in silico tools, can provide fast, accurate, and 
cheaper solutions.

In silico tool prediction is evaluated in supporting roles according 
to American College of Medical Genetics (ACMG) criteria.4 During 

the variant classification process, many variant prediction tools are 
used. With the existing tools, the threshold classification accuracy of 
many tools is very low. In 2022, the Clingen Group recommended 
a new threshold for certain protein prediction tools and meta-pre-
dictors. However, they stressed that their recommended thresholds 
could vary from gene to gene. Therefore, they suggested that specific 
groups are needed to determine gene-specific thresholds.5 In certain 
conditions, a laboratory with a specific gene or a limited number 
of genes as its focus may autonomously calibrate one of these tools 
using the methodology outlined in Clingen's recommendation.

The calibration process may result in unique numerical thresh-
olds for different levels of evidence specifically tailored to the 
gene(s) under investigation. While most of the predictors classified 
benign MEFV gene variants with higher accuracy, they could not 
classify pathogenic variants even with heads-or-tails probability.5,6 
Furthermore, most of the time, the predictors underestimate the 
variations of unknown significance and their effects. Therefore, the 
prediction calculations might yield accuracy scores that are over-
estimated. However, including variation of unknown significance 
(VOUS) variants in prediction calculations might provide 2 advan-
tages: (1) increased sample size and (2) minimized the effects of 
selection bias. Because we are facing a serious sensitivity problem, 
optimal thresholds are needed for solving this problem. The combi-
nation of the optimal number of tools might provide essential ben-
efits for variant classification.

In this research, Z-score-based outlier analysis is utilized. The 
reason for choosing Z-scores is their status as one of the most 
commonly used methods for outlier analysis. However, the 
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difference here lies in the repeated application of this analysis 
until no outliers remain. This approach aims to create a dataset 
with a distribution as close to normal as possible, minimizing data 
loss. We will establish new pathogenicity threshold values based 
on this dataset. The study aims to develop an Ensemble tool that 
achieves the most accurate prediction possible and determines 
the pathogenicity threshold value provided by the most optimum 
distribution.

Methods

Data Extraction and Preparation for Analysis
First, we extracted a dataset from the Infevers database [https 

://in fever s.uma i-mon tpell ier.f r/web /sear ch.ph p?n=1 . We obtained 
common variant prediction tools from the dbNFSP 4.0 and 
Franklin Genoox databases. All prediction tools were selected 
according to Clingen’s recommendations.4,5,7 Aggregated predic-
tion scores from Franklin Genoox were used as a control group. 
Franklin Genoox is a well-respected variant interpretation tool 
such as Varsome and Intervar.8 Therefore, we used aggregated pre-
dictions as a control group for our receiver operating curve analy-
sis. Overall, 266 out of 389 (68.38%) variants were obtained, and 
11 out of 43 (25.58%) scores were available for analysis, which 
are Bayes Del, FATHMM, GeneCanyon, GERP, fitCons, MetaLR, 
MutAssesor, Polyphen-2, Revel, SIFT, and Varity. These tools were 
selected based on Clingen Research Group in silico tool selection 
recommendations for missense variants.5 Second, we included 
only single nucleotide polymorphism variants, whether located 
in the coding region or not. Hence, we excluded frameshift dele-
tions, inframe deletions, frameshift insertions, inframe insertions, 
and duplications.The study relies on publicly available and open-
source data. There is no requirement for approval from an ethics 
committee or informed consent. 

Variant Categorization
In the Infevers database, 7 categories are available: not classi-

fied, unsolved, variation of unknown significance, benign, likely 
benign, pathogenic, and likely pathogenic. According to ACMG 
criteria, there are 5 classification categories: variation of unknown 
significance, benign, likely benign, pathogenic, and likely patho-
genic. However, in routine clinical practice, likely pathogenic and 
pathogenic variants are most commonly used to describe disease-
causing variants.4,5,9 Furthermore, likely benign and benign variants 
are also utilized to describe benign variants. We use unresolved, 
VOUS, and not categorized to describe indeterminate variants. We 
merged the likely pathogenic and pathogenic variants as disease-
causing in the high-sensitivity group and coded them as 1; we 
named other variants as “others” and coded them as 0. Similarly, 
we merged the likely benign and benign variants as benign in the 
high specificity group and assigned them a code of 1; all other 
variants were named and coded as 0. A similar merged method 
was used in previous studies.6,10,11

High Sensitivity Model
The concept of sensitivity is commonly defined as the propor-

tion of true positive results to the overall number of individuals 
who truly possess the specific condition under examination. In 
contrast, specificity can be defined as the proportion of true nega-
tives relative to the overall population of individuals who do not 
possess the specific condition under consideration for testing. The 
evaluation of diagnostic procedures necessitates the implementa-
tion of these measures, as they play a pivotal role in determin-
ing their accuracy and reliability.12 Therefore, disease-causing and 

benign variants are target variables in high-sensitivity and high-
specificity models, respectively.

Curve Estimation Analyses
The primary aim of curve fitting is to provide a theoretical rep-

resentation of empirical data using a model, typically in the form 
of a function or equation, and to determine the corresponding 
parameters for this model. Mechanistic models hold paramount 
significance in our context. Curve estimation analyses are com-
monly employed to determine whether a linear or logistic model 
adequately fits a given dataset. These analyses aim to establish the 
presence of a statistically significant curve distribution.13 However, 
our analysis encompassed not only linear models but also qua-
dratic, logistic, and other types of models.

Receiver Operating Curve Analysis
Based on the receiver operating characteristic (ROC) analysis, 

scores ranging from 0.7 to 0.8 are generally considered accept-
able, while scores falling between 0.8 and 0.9 are deemed more 
favorable. Exceeding 0.9, scores are regarded as indicative of out-
standing performance. We established a threshold of 0.7. For the 
purpose of prediction, scores exceeding the threshold of 0.7 are 
utilized. Logistic regression (LR) analysis incorporates scores that 
exceed the threshold of 0.7.

Logistic Regression Model for Prediction
The high-sensitivity model of the LR model is predicted to find 

disease-causing variants, while the high-specificity model is pre-
dicted to find benign variants. Before implementing LR analysis, 
we checked the necessary assumptions for implementing LR anal-
ysis. These include multicollinearity problems, homogeneity of 
variance, and outlier detection.

Outlier Detection
We repeated the outliers detection process until there were no 

outliers remaining within the range between –2 and +2 SD, as 
determined by the Z-score distribution.

Machine Learning Classification Process
We outperformed LR, Gradient Boosting, Random Forest, and 

Ada Boosting algorithms. The reason that we chose LR is to test 
our prediction algorithm’s success on a machine-learning dataset. 
Tree-based algorithms are widely accepted as the most accurate 
classifiers and are not significantly influenced by outlier detec-
tion. Therefore, we selected 3 tree-based algorithms that were not 
affected by outliers.

Results

Selection of In Silico Tools and Curve Fit Analysis Results
The exclusion of Polyphen-2 from the analysis was based on the 

presence of more than 80 missing data points. The analysis using 
GeneCanyon, FATHMM, MutAssesor, SIFT, and Fitcons in silico 
models revealed that the curves in question did not fit with any 
known curve model. Figure 1 illustrates the findings.

Prediction Results on Outlier Included Analysis Results and 
Finding Most Accurately Classified Tools

We performed ROC analysis on the remaining Revel, MetaLR, 
BayesDel, Varity, and GERP scores. The analysis findings conclude 
that all 5 scores exhibited a statistically significant ability to iden-
tify the variants deemed causative of the disease under consider-
ation. However, the AUC analysis revealed that 3 scores surpassed 

https://infevers.umai-montpellier.fr/web/search.php?n=1. We obtained common variant prediction tools from the dbNFSP 4.0 and Franklin Genoox databases. All prediction tools were selected according to Clingen’s recommendations
https://infevers.umai-montpellier.fr/web/search.php?n=1. We obtained common variant prediction tools from the dbNFSP 4.0 and Franklin Genoox databases. All prediction tools were selected according to Clingen’s recommendations
https://infevers.umai-montpellier.fr/web/search.php?n=1. We obtained common variant prediction tools from the dbNFSP 4.0 and Franklin Genoox databases. All prediction tools were selected according to Clingen’s recommendations
https://infevers.umai-montpellier.fr/web/search.php?n=1. We obtained common variant prediction tools from the dbNFSP 4.0 and Franklin Genoox databases. All prediction tools were selected according to Clingen’s recommendations
https://infevers.umai-montpellier.fr/web/search.php?n=1. We obtained common variant prediction tools from the dbNFSP 4.0 and Franklin Genoox databases. All prediction tools were selected according to Clingen’s recommendations
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the threshold of 0.7. We evaluated the scores Revel, BayesDel, and 
Varity based on their performance in detecting the area under the 
curve. The respective scores were as follows: 0.747 [0.680-0.814], 
P < .001; 0.743 [0.674-0.811], P < .001; and 0.729 [0.661-0.796], 
P < .001. The area under the curve for both the MetaLR and GERP 
scores was less than or equal to 0.7 (MetaLR: 0.618 [0.513-0.722], 
P < .001; GERP: 0.610 [0.521-0.699], P < .001). Homoscedasticity 
tests were conducted on the 3 scores (Revel, BayesDel, and Varity) 
that exceeded the set limit, revealing no multicollinearity prob-
lems (Figure 2). Subsequently, we performed LR analysis and found 
that the variance score was not statistically significant. There are 
only 2 scores left, and we combined these 2 scores as predicted 
probabilities and compared them with existing algorithms (Revel 
and BayesDel).

Implementing Repeated Analysis of Z Score Outlier Prediction 
Results and Determining New Thresholds

Existing algorithms include many extreme values and outliers. 
Therefore, we first implemented LR analysis and detected outliers 
according to standardized residuals. We decided to use a thresh-
old of 2 for absolute values based on Z scores. After deciding on 
the scores as a threshold, we accepted values higher than these as 
outliers and excluded these variant scores from the analysis. This 
process repeated itself after all the outliers vanished. In the end, 
overall, 222 variables remained. In the final stage, we improved 
the combined effects of the Revel and BayesDel algorithms with 

outstanding performance (0.982 [0.967-0.998], P <.001) (Figure 3). 
Furthermore, each of the Revel and Bayes Del algorithms’ classi-
fication success was highly increased, respectively (0.982 [0.967-
0.998], P < .001) for Revel and 0.933 [0.889-0.977], P <.001) for 
Bayes Del. Our algorithm achieved more accurate classification 
than the Franklin Genoox aggregated prediction algorithms, regard-
less of whether outliers were removed or not. After removing outli-
ers in our predicted probability scores higher than 0.2, scores were 
much more probably not classified as benign (Figure 4). Therefore, 
we predict that VOUS variants higher than the 0.2 threshold are 
most likely to be evaluated as pathogenic.

Testing Prediction Accuracy on Machine Learning Models
In the next step, we tested our outlier-detected MEFV variants 

on Ensemble machine-learning models. According to this model, 
our algorithm showed outstanding performance for each of the 4 
scores, which were LR, Gradient Boosting, Random Forest, and 
Ada Boosting (ROCAUC >90% for every 4 algorithms). The most 
accurate classifier was the AdaBoost algorithm (ROCAUCAdaBoost: 

0.9818). Although LR prediction was slightly lower than the outlier 
detection statistical model and other ML models, it still showed 
outstanding performance with 0.92 accuracy (Figure 5).

Discussion
Our model presents the best Ensemble tool to date in MEFV gene 

classification. Furthermore, our research calculates the optimal 

Figure 1. Unnormalized score comparison of in silico tools according to new classification system. While Revel, SIFT, MetaLR, and Varity 
scores have been right-skewed distributed, GERP and GenoCanyon algorithms were left-skewed.
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Figure 2. Correlation analysis of the 4 most accurately classified tools. Higher correlation values than 0.7 accepted as a high correlation 
and therefore excluded from the model. The most significant correlation was detected between MetaLR and BayesDel scores (r:0.8). As 
there were strong correlation detected between MetaLR and BayesDel, MetaLR scores were excluded from the analysis.

Figure 3. Final step of evaluation. After removing outliers, new sensitivity scores. After repeated exclusion of outlier values, overall 44 
values were excluded from the analysis, and total 222 target variations remained. Before removing outliers, the most accurate classifiers 
classified good (0.7-0.8 AUC values) or satisfactory (0.6-0.7 AUC values) level; however, after removing outliers the ROCAUC scores of 
all 4 algorithms (Combined effects of the Revel and BayesDel, Revel alone, BayesDel alone, and Franklin Genoox aggregated prediction) 
indicates outstanding performance (higher than 0.9 AUC values) Removing outliers not only increased significantly our predicted 
probability algorithm ROCAUC performance but also contributed significantly to each individual prediction tool.
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threshold for every accurate classifier prediction tool. Our algo-
rithm outperformed with 98.6% ROCAUC scores in classification. 
Moreover, the algorithm presents the most accurate classification 
among the current tools. The success of our Ensemble algorithm is 
based on including Revel and BayesDel combinations. Therefore, 

we both evaluated and removed the optimal number of outliers in 
both Revel and BayesDel.

According to our study results, only 2 variant pathogenicity pre-
dictor tools are better than Franklin Genoox's aggregated predic-
tion, which are BayesDel and Revel, compatible with the existing 
literature.5,14 Surprisingly, the BayesDel algorithm presents a more 
accurate classification ratio than the Revel algorithm. However, 
after removing outliers, Revel outperformed in classification. 
Currently, numerous tools predict missense variants. A few months 
ago, alpha missense predicted all missense variant combinations 
based on alpha fold, which predicts alpha fold 3D visualization 
prediction.15,16 Although the pathogenicity of more than 90% of 
missense variants is unknown in the ClinVar database,15 alpha mis-
sense can only be classified in more than 60% of all variants.16 
However, despite the significant improvements in technologies, 
we are still far beyond the classification of many unknown vari-
ants. Furthermore, with the widespread utilization of next-gener-
ation sequencing technology, we are facing novel, uncategorized 
variants.17

It is quite certain that novel technologies bring new, unknown 
issues. However, solving these issues can be achieved by com-
bining novel technologies, novel statistical approaches, and opti-
mizing existing algorithms. In the literature, few studies aimed 
to optimize existing scores for MEFV gene variants. One of the 
optimization studies on MEFV gene variants was implemented 
by determining a new threshold by Acetturo et al; however, they 
tested their results on relatively low training dataset accuracy,18 
which is 75% accuracy.11 In this article, they included an analy-
sis of outliers and testing for training data accuracy. They used 
linear discriminant analysis (LDA). However, because the dataset 
lacks a Gaussian distribution, LDA is inappropriate for their analy-
sis. Therefore, the assumption of equal covariance matrices across 
classes might not hold true.19 In contrast to this study, we used LR 

Figure  4. After the removal of outliers, the distribution of each variant was subsequently classified into a new categorization. Our 
predictive probability algorithms demonstrate practically optimal outcomes. Based on the outcomes of our algorithm, any score exceeding 
0.2, with the exception of one value, was categorized as LP. Alternatively, when using a threshold of 0.5, the classification of variants was 
even worse than random chance. Conversely, scores below this threshold were classified as benign. Nevertheless, despite extensive outlier 
detection, the remaining 3 algorithms failed to differentiate between LP and LB variants on an individual basis.

Figure  5. Results of machine learning. All 4 algorithms exhibit 
outstanding classification performance. The ROCAUC results of 
the Ensemble algorithm were found to be higher than those of 
logistic regression. Despite the logistic regression algorithm's 
prediction scores being lower than anticipated (ROCUAC:0.92), 
all algorithms exhibited exceptional performance on the test 
dataset. The classifier that achieved the highest level of accuracy 
was AdaBoost, with a classification success rate of 98%.
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analysis20 in our analysis, and we used curve fitting analysis in the 
previous step to test the distributions of our datasets.21,22 However, 
the new classifier algorithms implemented by Alay et al, dubbed 
“modified hard margin classifiers,” are able to classify all likely 
pathogenic and likely benign variants correctly. To find out how 
accurate the data is in reality, the algorithm must test it on addi-
tional datasets.6

The strength of the study was based on optimum, most accu-
rate classifiers and outlier-detected methods. The limitation of our 
study is the sample size based on the reported number of MEFV 
gene variants. However, the sample size is sufficient to imple-
ment outlier detection. Furthermore, Ensemble machine learning 
methods’ outstanding classification success supported classical 
statistical method concepts. The algorithm can be based on eas-
ily repeatable and commonly accepted statistical concepts, and 
it can be easily adapted to other gene classification approaches. 
Therefore, using the same algorithm, we can predict other genes. 
In the next step, the outlier-detected Ensemble method can be 
implemented for other gene groups. Although algorithmic clas-
sification improvement is quite assured, the classification accu-
racy of in silico tools can vary from gene to gene. Therefore, it is 
imperative to implement these new methods on other genes for 2 
reasons: (1) determining the best in silico predictors of every gene 
and detecting gene-specific thresholds for each gene and (2) test-
ing the generalizability of the algorithm.

Conclusion
As a result of the study, we detected that outlier and anomaly 

detection can improve not only statistical model accuracy but 
also provide more accurate results in machine learning datasets. 
Therefore, we strongly recommend that determining thresholds be 
based on outliers removal. The recommendation is based on 2 
issues: (1) outlier values can cause misinterpretation and decrease 
accuracy. (2) Outliers can reduce threshold determination. Our 
approach has the capacity to significantly improve the precision 
of categorizing MEFV gene variants and establish a more precise 
and accurate threshold by reducing the influence of outliers on 
classification bias. We can also utilize this approach for unknown 
variants in alternative genes.
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