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Abstract
Objective: We aim to train neural networks to predict hydrocephaly in patients with colloid cysts based on T2-weighted magnetic resonance imaging 
radiomics.

Methods: This study included 40 cases with a colloid cyst; the mean age was 54.08 ± 16.57 years, and 25 (62.5%) were women. Two observers 
segmented cysts on axial T2-weighted MRI and evaluated conventional features. Predictors were radiomics (n = 851) and conventional features (n = 
12). Feature selection was based on coefficient variance (CoV), variance inflation factor (VIF), and least absolute shrinkage, and a selection operator 
regression analysis. The outcome was identified as hydrocephaly. Models were developed with artificial neural networks (ANN) for 3 different diag-
nostic prediction models. The first model included radiomics features; the second model included conventional features; and the third model included 
all of the features. Artificial neural network performance was presented as an area under curve (AUC) and the receiver operating characteristic curve 
(ROC) and accepted as successful if the AUC > 0.85 and p-value < .01.

Results: By using CoV and VIF analysis, 49 features were found to be stable. Radiomics predict hydrocephaly with AUC = 0.88, sensitivity: 92%, 
specificity: 97%. Conventional features predict hydrocephaly with AUC = 0.87, sensitivity: 82%, and specificity: 93%. Third model (radiomics + 
conventional) AUC was 0.99, sensitivity: 91%, and specificity: 100% (all p-values < .001).

Conclusion: This study was successful in training neural networks that can predict hydrocephaly in patients with colloid cysts.

Keywords: Colloid cysts, magnetic resonance imaging, computer-assisted image processing, machine learning, artificial intelligence

Introduction
The colloid cyst of the third ventricle can cause acute and pro-

found hydrocephalus. In some cases, colloid cysts are associated 
with sudden death. They compose 0.5% to 1% of brain tumors. 
It is usually silent in childhood and may become symptomatic 
in the third and fourth decades of life. The cyst content (mucin, 
hemorrhage, and cholesterol) and degree of hydration determine 
the imaging characteristic. The colloid cysts are generally well-cir-
cumscribed, round–oval, and hyperdense on computed tomogra-
phy (CT).1-4 The signal intensity of the cyst in magnetic resonance 
imaging (MRI) depends on the content. Thin rim enhancement 
may be seen in the cyst wall, and no calcification is seen.1,5 The 
colloid cyst can be easily distinguished from other cystic lesions 
such as epidermoid, dermoid, and ependymal cysts with its loca-
tion and typical imaging features. A scoring system was proposed 
to predict hydrocephalus in asymptomatic patients, and it was sug-
gested that the treatment had a positive effect on the neural cogni-
tion of patients.4,6,7

Radiomics is a method that obtains quantitative data from radio-
logical images that have been used in the last decade. In oncology, 
it is widely used to predict tumor histology, chemoradiotherapy 
response, and even patient survival.8-11 Due to the multidimen-
sional nature of radiomics data, the use of artificial intelligence 

in feature selection and model development is increasing.12 In this 
study, neural networks were based on multilayer perceptron (MLP) 
and radial basis function (RBF). All configured networks are feed-
forward and fully connected.

This study aimed to train neural networks to predict hydroceph-
aly in patients with colloid cysts based on T2-weighted (T2W) MRI 
radiomics.

Methods

Ethical Considerations
A retrospective model-development study was done after the 

university’s local ethics committee approval (Decision number: 
2021/0306). Since it is a retrospective study, written informed 
consent was waived. This study was performed in accordance 
with the ethical standards laid down in the 1964 Declaration of 
Helsinki and its later amendments and the Standards for Reporting 
Diagnostic Accuracy statement was followed.13

Study Population and Data Collection
We conducted a keyword search of “colloid cyst” in radiology 

reports to identify patients with colloid cysts. Patients who had 
only CT images or MRIs without a T2W sequence were excluded 
from the study. Among the patients, 40 consecutive cases with col-
loid cysts between January 2015 and January 2020 were included. 
Age, gender, and clinical findings (presence or absence of head-
ache) were determined from the hospital data system. The dimen-
sions of the colloid cyst, FLAIR hyperintensity of the colloid cyst, 
risk zone location, and signal intensity changes in periventricu-
lar white matter were noted from MR images. The colloid cyst 
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risk scores (CCRS) were calculated and added to the worksheet.4 
Patients with an Evans index above 0.30 were accepted as having 
hydrocephalus.

Predictors and Outcomes
Magnetic resonance image of the included patients was taken 

from the hospital archive and anonymized. Resampling and nor-
malization were made. Segmentation was done volumetrically on 
T2-weighted MRI images using 3D Slicer software (Figure 1), ver-
sion 4.10.2 (https://www.slicer.org), blinded to patient outcome 
data. Eight hundred fifty-one radiomic features were extracted with 
PyRadiomics, version 2.2.0. All the features (shape, first order, and 
high order) in this module were selected, and wavelet-based filters 
were activated. Other detailed information about the radiomic fea-
tures included in the study is provided in Table 1. Predictors were 
identified as radiomic features (n = 851) and conventional features 
(n = 12). The CCRS and the other determined conventional fea-
tures are presented in Table 2. The outcome was defined as the 
presence of hydrocephalus (11/40, Figure 2).

Multidimensionality Reduction and Feature Selection
Stability of an image biomarker means that it is minimally 

affected by the sources of the differences in image acquisition, 
method, and human interface (low coefficient of variance or 
standard deviation), has a low relativity error rate (address accu-
racy), and suitable for clinical translation (diagnostic, therapeutic, 
and prognostic value) as determined by the European Society of 
Radiology (ESR).14-16

Feature selection was based on coefficient variance (CoV), 
variance inflation factor (VIF), and least absolute shrinkage, and 
a selection operator (LASSO) regression analysis. 14,17,18 Features 
were taken into the CoV analysis and those with >15% vari-
ance were eliminated. Features that passed the CoV analysis 

were further subjected to Spearman’s correlation analysis, and 
correlation matrixes were performed for VIF analysis. Variance 
inflation factor analyses were performed to reduce the colli 
neari ty–mu lticollinearity  using the formula 1/1 − R2. If the VIF 
was above 10, the feature was eliminated. Finally, features were 
selected with the LASSO with random sampling, and 5-fold cross-
validation was used.

Structuring Automated Neural Networks
Neural networks were trained to develop a diagnostic model. 

For training, networks of MLP and RBF were selected. The soft-
ware randomly sampled 40% of the cases as train (n = 12 control 
vs. n = 4 event), 20% as test (n = 5 control vs. n = 3 event), and 
40% as validation (n = 12 control vs. n = 4 event) set. The software 
assigned the number of neurons (6-25), number of bias neurons 
(minimum 1 per hidden layer), and number of layers [input layer 
(n = predictors for RBF and n = predictors + bias neuron for MLP), 
minimum 2 hidden layers, output layer (n = 2, positive event or 
not)], activ ation -hidd en-ou tput function [identity, logistic sigmoid, 
hyperbolic tangent, exponential, Softmax, and Gaussian (only 
available for RBF networks)], and error function (sum of squares, 
cross entropy), in these models by evaluating data (Table 3). With 
these settings, we trained 1000 networks and retained the most 
successful ones for each condition. The first model included the 
selected radiomic features, the second model included conven-
tional features, and the third model included the selected radiomic 
features and conventional features as the predictors.

Statistical analyses, neural network training, and validation were 
performed using TIBCO Statistica version 13.0.5 (Palo Alto, Calif, 
USA). Neural network results are presented with area under the 
curve (AUC) and 95% confidence intervals. In receiver operating 
curve (ROC) analysis, if AUC > 0.85 and p < .01, then it is consid-
ered a validated classifier neural network.

Figure 1. Magnetic resonance imaging in a 46-year-old female presenting with headache. (A and C) Axial T2-weighted spin-echo images 
show a rounded, hypointense mass in the anterior aspect of the third ventricle. (B and D) The segmentation of colloid cysts at the same 
level is shown. (E) 3D volume rendering AP projection obtained by segmentation from T2-weighted sequences shows the colloid cyst. 
(AP, anteroposterior)

https://www.slicer.org
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Table 2. Conventional Features, Descriptions, and Distributions

Feature Type Description Distributions with n

Gender Categorical 1. Female, 2. Male 25 female, 15 male

Age Quantitative Years (mean ± SD) 54.08 ± 16.57

Cyst dimensions Quantitative AP × TR × CC with millimeters (mean ± SD) 7.88 ± 3.81 × 7.25 ± 3.38 × 7.20 ± 3.84 mm

Periventricular hyperintensity Categorical 0. No, 1. Yes 36 no, 4 yes

Colloid cyst risk score Categorical It consists of 5 conventional features S0: 0, S1: 5, S2: 5,
S3: 15, S4: 7, S5: 7

Age <65 years Categorical 0. No, 1. Yes 13 no, 27 yes

Headache Categorical 0. No, 1. Yes 15 no, 25 yes

Axial cyst diameter >7 mm Categorical 0. No, 1. Yes 16 no, 24 yes

FLAIR hyperintensity Categorical 0. No, 1. Yes 21 no, 19 yes

Risk zone Categorical 0. No, 1. Yes  4 no, 36 yes

The quantitative features used in the study were age and the 3 dimensions of the colloid cyst. Also, age and axial cyst diameter were included as 
categorical features as part of the colloid cyst risk score (CCRS). Risk zone is lesions located in the zones I and III, shown in Figure 3. All of these 
10 features have been used as a predictor feature in model 2. The third model were used as predictor of first and second model’s predictors.
FLAIR, Fluid attenuated inversion recovery; AP, antero-posterior; TR, Transvers; CC, craniocaudal.

Figure 2. (A and B) Colloid cyst and segmentation are seen on T2-weighted magnetic resonance images in a 49-year-old female patient. 
C It is observed that ventricle dimensions are normal in the same patient. (B and E) A 71-year-old female patient has a colloid cyst and its 
segmentation on T2-weighted magnetic resonance images. (F) Hydrocephalus is seen in the same patient.

Table 3. Model Structure and Configurations

Number of Inputs Structure Training Algorithm Error Function Hidden Activation Output Activation

Model 1 5 RBF RBFT SOS Gaussian Identity

Model 2 10 MLP BFGS SOS Exponential Exponential

Model 3 15 RBF RBFT Entropy Gaussian Identity

MLP, multilayer perceptron; RBF, radial basis function; RBFT, Redundant Byzantine Fault Tolerance; BFGS, Broyd en-Fl etche r-Gol dfarb -Shan no; SOS, 
Sum of Squares. 
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Results

Patient’s Characteristics
This study included 40 cases; the mean age was 54.08 ± 16.57 

years, and 25/40 (62.5%) were women. The clinical and radio-
logic characteristics are presented in Table 2.

Feature Selection
In total, 851 features were evaluated by CoV, and 779 features 

were eliminated. Another 23 features were eliminated by VIF anal-
ysis due to collinearity. Most of the radiomic features were found 
to be unstable (n = 802, 94%).

Diagnostic Prediction Model Results
Radiomic features predict hydrocephaly with AUC = 0.88, 

p <  .001, sensitivity: 92%, and specificity: 97%. Conventional 
features predict hydrocephaly with AUC = 0.87, P < .001, sensitiv-
ity: 82%, and specificity: 93%. Combination of conventional and 
radiomic features (Third model) AUC was 0.99, P < .001, sensitiv-
ity: 91%, specificity: 100% (Table 4 and Figure 3).

Discussion
All 3 neural networks achieved targeted diagnostic accuracy in 

predicting hydrocephaly in patients with colloid cysts. However, 
the most successful model was the third, created by combining 

Table 4. Results for Trained Networks

True Positive False Positive True Negative False Negative Area Under Curve Accuracy %

Model 1 9 2 27 2 0.87 90.00

Model 2 9 2 28 1 0.88 92.50

Model 3 10 0 29 1 0.99 97.50

Figure 3. Receiver operating characteristic curves for conventional features, radiomic features, and combination of conventional and 
radiomic features, respectively.
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conventional and radiomic features. With the new pipeline used 
in this study, we have shown that many radiomic features were 
not stable.

Previous studies in neuroradiology focused on oncology, 
especially glioblastoma diagnosis, surveillance, and chemo-
therapy response.10-12 Radiomic features that make these dis-
tinctions take advantage of the heterogeneity of the tumor.9 
The search for the keywords glioblastoma and radiomics in the 
PubMed search yields approximately 276 results (July 2022). In 
this study, we focused on the nononcologic use of radiomics. 
The CCRS is a scoring system that predicts the development of 
hydrocephalus, and it is unclear which of the parameters used 
in scoring is more effective in the development of hydrocepha-
lus. Acute obstructive hydrocephalus and serious complications 
such as herniation, infarction, and death may occur in patients 
with colloid cysts.19 Therefore, the prediction of hydrocephalus 
is critical. Depending on the protein density, colloid cysts may 
appear hyperdense on CT, hypointense in the T2W sequence, 
and hyperintense in the T1W sequence.20 We hypothesized that 
differences in intensity and heterogeneity in colloid cysts that 

the naked eye cannot distinguish might predict hydrocephalus. 
According to the current study results, neural networks, con-
figured with radiomic data, successfully predicted whether 
patients had hydrocephalus.

In a recent study, colloid cysts were scored over 5 points, with 
scoring based on age, history of headaches, axial size of the 
cyst, FLAIR hyperintensity, and lesion localization (Figure 4). 
Patients who got 4 and 5 points from this scoring developed 
hydrocephalus in their follow-up and became symptomatic. 
The AUC for symptomatic colloid cysts and obstructive hydro-
cephalus was 0.98 and 0.94, respectively.6 Our study’s second 
model similarly reached 0.87 AUC using only conventional fea-
tures. However, the third model, which used all features, had 
the highest success, and this model accurately predicted hydro-
cephalus in 40 participants, except for 1 patient. To the best of 
our knowledge, this is the first study to use T2-weighted MRI 
radiomics in the diagnosis of hydrocephalus in patients with 
colloid cysts.

Another important addition to the pipeline is that the data are 
evaluated with fully automated neural networks. What we mean 
by automatization here is that the involvement of the human 
observer is minimized. Unlike previous studies, software inde-
pendently decided how many neurons to be in the model, which 
configuration, how many layers to be, which training algorithm to 
choose, which error function to use, which hidden activation to 
use, and which output activation to use for evaluating predictors 
and outcomes (Figure 5).

Limitations
Our study has several limitations. The first of these is that the 

study is single centered, and the sample size is limited. The sec-
ond limitation is the disproportionate distribution between the 
patients with hydrocephalus and patients without hydrocepha-
lus. We used all available internal validation options to deal with 
this limitation.

This study could not train a convolutional neural network for 
this task due to the sample size limitation.21 The community’s need 
for large case-imaging libraries that can accommodate all kinds of 
cases in every field of medicine is increasing.

Conclusion
This study successfully trained and validated neural networks 

that can predict hydrocephaly in patients with colloid cysts.

Figure 4. The third ventricle was divided into 3 zones along the 
sagittal axis to determine the risk zone: zone I, from the lamina 
terminalis to the massa intermedia; zone II, from the massa 
intermedia to the inlet of the cerebral aqueduct; and zone III, from 
the inlet of the cerebral aqueduct to the posterior of the third 
ventricle.

Figure 5. The pipeline of the study. Coefficient of variance and variance inflation factor analyses added to the pipeline significantly 
reduced multidimensionality. These analyses also allowed the selection of the most stable and diverse features. The automated neural 
networks used have reduced human-induced bias to a minimum.
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